Artificial Intelligence - Tradetech Research | Trade Finance Global

    • Themes
      • Trade

        Do you want to know how access to trade finance can increase your cross-border imports and exports? Explore our Trade Finance hub for practical tools.

        Treasury

        Are you a treasury or operations manager looking to mitigate the risks and efficiently manage your business’ cash flow? If so, check out our Treasury Management hub.

        Payments

        Whether you want updates from infrastructure support to cross-border transactions or clearing house operations to processing techniques, you can find all on our Payments hub.

        Letters of Credit

        Ready to to increase your imports / exports to guarantee the payment and delivery of goods? Find out more about LCs here.

        Shipping & Logistics

        Whether you’re transporting goods, or learning about supply chains, warehousing, transportation and packaging, we’ve got you covered.

        Incoterms

        Need to know which International Commerce Term is right for your needs? Explore our curated guides from shipping expert Bob Ronai.

        Sustainability

        Prioritising sustainable supply chains? Building inclusive trade? Working towards the UN’s 2030 SDGs? Read the latest on global sustainable standards vs green-washing here.

        Customs

        Heading into international markets? From the correct documentation to standardisation, here’s what you need to know for a streamlined customs clearance process.

        TradeTech

        TradeTech is rapidly evolving to help reduce some of the biggest challenges when it comes to trade. Keep up with these innovations here.

    •  

       

    • News & Insights
      • News

        The latest in Trade, Treasury & Payments - stay up to date on all the changes across the globe.

        Magazines

        The issues feature experts across the industry on the latest developments with specific themed and regional editions.

        Articles

        Insights by the industry, for the industry. These include thought leadership pieces, interview write ups and Q&As.

        Guides

        Working closely with industry experts and trade practitioners we provide inclusive educational guides to improve your technical knowledge and expertise in global trade.

        Research & Data

        We undertake qualitative and quantitative research across various verticals in trade, as well as create reports with industry association partners to provide in-depth analysis.

        Trade Finance Talks

        Subscribe to our market-leading updates on trade, treasury & payments. Join the TFG community of 160k+ monthly readers for unrivalled access in your inbox.

    • Media
      • Podcasts

        Welcome to Trade Finance Talks! On our series we hear from global experts in trade, treasury & payments.

        Shorts

        Enjoy our bite-sized video content for insights on-the-go with our short VoxPop & summary series.

        Webinars

        Experience the true nature of the TFG community through panel discussions on the latest developments - engage with questions.

        Videos

        Join us as we interview leaders in international trade, treasury, payments and more! Watch and learn.

    • Events
      • Partner Conferences

        We partner with industry conferences around the world to ensure that you don’t miss out on any event; in person or online, add to your calendar now.

        Women in Trade, Treasury & Payments

        Get involved in our most important campaign of the year, celebrating the achievements of women in our industry and promoting gender equity and equality.

        Awards

        Our excellence awards in trade, treasury, and payments are like no other. You can't sponsor them, and they're independently judged. They are the most sought-after industry accolades.

        Online Events

        Join our virtual webinars and community events. Catch up on-demand, right here on TFG.

    • Editions
    • Finance Products
      • Trade Finance

        Trade finance is a tool that can be used to unlock capital from a company’s existing stock, receivables, or purchase orders. Explore our hub for more.

        Invoice Finance

        A common form of business finance where funds are advanced against unpaid invoices prior to customer payment

        Supply Chain Finance

        Also known as SCF, this is a cash flow solution which helps businesses free up working capital trapped in global supply chains.

        Bills of Lading

        BoL, BL or B/L, is a legal document that provides multiple functions to make shipping more secure.

        Letters of Credit

        A payment instrument where the issuing bank guarantees payment to the seller on behalf of the buyer, provided the seller meets the specified terms and conditions.

        Stock Finance

        The release of working capital from stock, through lenders purchasing stock from a seller on behalf of the buyer.

        Factoring

        This allows a business to grow and unlock cash that is tied up in future income

        Receivables Finance

        A tool that businesses can use to free up working capital which is tied up in unpaid invoices.

        Purchase Order Finance

        This is commonly used for trading businesses that buy and sell; having suppliers and end buyers

    •  

       

    • Sectors
    • Case Studies
      • Informing today's market

        Financing tomorrow's trade

        Soft Commodities Trader

        Due to increased sales, a soft commodity trader required a receivables purchase facility for one of their large customers - purchased from Africa and sold to the US.

        Metals Trader

        Purchasing commodities from Africa, the US, and Europe and selling to Europe, a metals trader required a receivables finance facility for a book of their receivables/customers.

        Energy Trading Group

        An energy group, selling mainly into Europe, desired a receivables purchase facility to discount names, where they had increased sales and concentration.

        Clothing company

        Rather than waiting 90 days until payment was made, the company wanted to pay suppliers on the day that the title to goods transferred to them, meaning it could expand its range of suppliers and receive supplier discounts.

        Get Trade Finance

        Informing Today’s Market, Financing tomorrow’s Trade.

    • Get Trade Finance
  • About Us
  • Talk To Us

Artificial Intelligence

Last updated on 28 Jul 2024
19 Mar 2021 . 5 min read
Deepesh Patel
Deepesh Patel is Editorial Director at Trade Finance Global (TFG) and host of Trade Finance Talks. Deepesh regularly chairs and speaks at international industry events held by the IFC, EBRD, IMN, WTO, Financial Times and Economist Impact, as well as industry associations including ICC, FCI, ITFA, ICISA and BAFT.

Access trade, receivables and supply chain finance

We assist companies to access trade and receivables finance through our relationships with 270+ banks, funds and alternative finance houses.

Get Started

Want to learn more?

Download our free Trade Finance Guides

ITFA-TFG-Guide
Download

Content

    Artificial Intelligence

    While big data analytics compile useful data for humans to use in decision-making, artificial intelligence (AI) is able to further process that data and produce an actual decision. According to the Encyclopedia Britannica, AI is:

     

    “the ability of a digital computer or computer-controlled robot to perform tasks commonly associated with intelligent beings. The term is frequently applied to the project of developing systems endowed with the intellectual processes characteristic of humans, such as the ability to reason, discover meaning, generalize, or learn from past experience.” 

    AI is a broad term that is used to describe a series of subfields, such as machine learning, neural networks, deep learning and natural language processing (see Box 1).

    Big data analytics and AI are closely linked. The development of big data analytics involves many AI theories and methods and therefore depends on AI, and the development of AI relies on big data analytics because it requires lots of data for the process of “learning”. As a result, many of the benefits and challenges for micro, small, and medium enterprises (MSMEs) that big data analytics represent will also be represented by AI. The following sections will focus exclusively on the benefits and challenges that are unique to AI.

    Box 1: Sub-categories of AI

    Machine learning (ML): A subset of AI techniques that uses experience to improve performance.

    Neural networks: Virtual network structures that are designed, in their topology and behaviour, to resemble neuron cells and the connections of the latter within the biological brain.

    Deep learning: A subset of ML that uses multi-layered neural networks to solve complex problems.

    Natural language processing (NLP): A branch of AI that deals with the interaction between computers and humans using natural language, i.e. naturally evolved human language, as opposed to binary computer language.

    layer

    Potential benefits for MSMEs

    AI brings the power of data to the next stage compared to big data analytics. The ability of AI-powered programmes to parse and understand data has vast implications for financing processes. In addition, it has the capability to facilitate the creation of new processes that were simply too complicated to be done with the human brain itself, including predictive insights across trade functions. The development of predictive insight capabilities has interesting applications, such as credit scoring. A better outcome for credit scoring could help shift the focus towards good risk, potentially increasing MSME access to trade finance (which is low-risk by nature). At its core, AI has the power to go beyond the limited capabilities of human intelligence.

    Figure 3b

    Use cases of AI

    • There are multiple examples of companies using AI and ML to improve their financing solutions to the benefit of all, in particular MSMEs. 
    • For example, Efcom, a factoring software firm based in Germany, uses AI as a risk monitoring tool to determine if an invoice is fraudulent. 
    • QuantaVerse, for its part, uses AI for entity resolution and relationship-mapping and to monitor transactions for suspicious activity, which are all-important for the onboarding of new customers and financial crime compliance. 
    • Another firm that leverages AI to assist with client onboarding is Temenos. Temenos also uses AI to help banks conduct eligibility checks and process loan applications. 
    • RHB Banking Group has an AI-powered mobile app to help with compliance checking and personalized offerings.
    • Other companies, such as Flowcast, a US-based AI firm, leverage machine learning methodologies to create predictive models that assess risk. Flowcast’s models render explainable a business’ creditworthiness, its risk of delinquency, its timeliness in making repayments, and the likelihood of dilution of its transactions. 
    • Ant Group, a member of the Alibaba Group, uses AI and data from mobile payment platform Alipay to run an extraordinary variety of businesses, including consumer lending, money market funds, and wealth management, health insurance and credit rating services. AI supplements Ant Group’s business functions on many fronts, including fraud prevention and risk profiling. 
    • Tradeteq is another fintech company that uses big data analytics and AI for credit scoring to help MSMEs which are often deemed “too risky” by current credit rating models to access finance. Tradeteq provides AI-powered predictive credit analytics to assess the riskiness of clients, vendors and individual transactions, and to assess the potential for defaults in trade finance liabilities of private and unrated companies. 
    • Finally, AI is also being used by companies for dynamic discounting and supply-chain financing.

    Difficulty Adopting

    For more information about this diagram, visit our research methodology page.

    Addressing AI challenges

    While the road ahead for AI is promising, it is not without its challenges. The efficiencies of AI are maximized when applied to digitally native documents. Unfortunately, we are still facing regulatory challenges on the acceptance of digitally native documents. In most instances, trade transactions necessitate the use of paper documents, which AI tools in isolation are unable to access. If AI is to realize its full potential, outdated regulatory requirements will need to be updated and advancements will need to be made in other supporting technologies, namely optical character recognition (OCR). Unfortunately, OCR currently requires human intervention to ensure accuracy. The key in this instance is to bypass the error-prone middleman, OCR, entirely. Updating regulations to accept the use of digital original trade documents would facilitate an environment in which the entire trade cycle is paperless and can benefit from the power of digitalization.

    Figure 3d

    Most current national regulations do not allow most AI solutions to be widely adopted. This stems from legal concerns, such as the ambiguity of Uniform Customs and Practice for Documentary Credits (UCP) rules, which do not specify whether AI can be used in lieu of humans. As policymakers work to bring these regulations into the digital age, however, they must not do so using clauses that limit AI’s usefulness. It will be key that regulators do not require from machines too much compared to what they require from human beings, such as the explainability of underwriting decisions. Overburdening of this nature would set AI adoption back considerably. 

    Likewise, too much regulatory change poses a particular challenge for AI and ML. Machine learning is only as good as the input and supervision which can also be complicated by changing requirements and regulations. Changes to regulations, such as those used in compliance, will effectively require the algorithm to learn a whole new set of rules – a time-consuming and costly process.

    Another major step forward for AI in trade finance will be the further standardization of trade documents and data formats. While AI models are able to decipher unstandardized forms better than previous computing technologies, standardized forms would lead to a higher recognition ratio and subsequently more accurate prediction models. Prediction model accuracy is a direct driver of the appetite for AI adoption. 

    Progress in education will help firms to make the decision to implement AI. Education on the usefulness of AI will allow banks to fully understand the benefits that using it to help small businesses will have for the sector. Explainable artificial intelligence (“XAI”), whereby the results of AI algorithms can be conveyed to and understood by humans, will provide further transparency.

    Another crucial challenge to be addressed is that of the lack of trust of the human teams within financial institutions with regard to algorithms. Many employees feel threatened by algorithmic tools and fear that by assisting the machine, they will train themselves out of a job. To overcome this, firms seeking to implement the technology need to educate their employees both on its benefits and its limitations. Document checkers need to be trained to understand where the technology assists them, but also where it does not assist them, to prevent a mismatch of expectations. There is still a human checker involved, and this person needs to know what the machine is not able to pick up. It is the people that will give AI its power and they need to be prepared. This will prevent a mismatch of expectations and help employees to understand that these algorithms exist to enable, not to replace.

    Speak to our trade finance team



    Publishing Partners

    • Tradetech Resources
    • All Tradetech Topics
    • Podcasts
    • Videos
    • Conferences
    Latest
    A-Z Latest
    Back to Top